Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 38(22)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29028137

RESUMEN

Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first ß-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material.


Asunto(s)
Polímeros/química , Polimerizacion , Polímeros/síntesis química , Teoría Cuántica , Energía Solar , Espectrofotometría
2.
ACS Appl Mater Interfaces ; 8(41): 27931-27941, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27660888

RESUMEN

The compositional dependence of the open-circuit voltage (Voc) in ternary blend bulk heterojunction (BHJ) solar cells is correlated with the miscibility of polymers, which may be influenced by a number of attributes, including crystallinity, the random copolymer effect, or surface energy. Four ternary blend systems featuring poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) (P3HT75-co-EHT25), poly(3-hexylthiophene-co-(hexyl-3-carboxylate)), herein referred to as poly(3-hexylthiophene-co-3-hexylesterthiophene) (P3HT50-co-3HET50), poly(3-hexylthiophene-thiophene-diketopyrrolopyrrole) (P3HTT-DPP-10%), and an analog of P3HTT-DPP-10% with 40% of 3-hexylthiophene exchanged for 2-(2-methoxyethoxy)ethylthiophen-2-yl (3MEO-T) (featuring an electronically decoupled oligoether side-chain), referred to as P3HTTDPP-MEO40%, are explored in this work. All four polymers are semicrystalline and rich in rr-P3HT content and perform well in binary devices with PC61BM. Except for P3HTTDPP-MEO40%, all polymers exhibit similar surface energies (∼21-22 mN/m). P3HTTDPP-MEO40% exhibits an elevated surface energy of around 26 mN/m. As a result, despite the similar optoelectronic properties and binary solar cell performance of P3HTTDPP-MEO40% compared to P3HTT-DPP-10%, the former exhibits a pinned Voc in two different sets of ternary blend devices. This is a stark contrast to previous rr-P3HT-based systems and demonstrates that surface energy, and its influence on miscibility, plays a critical role in the formation of organic alloys and can supersede the influence of crystallinity, the random copolymer effect, similar backbone structures, and HOMO/LUMO considerations. Therefore, we confirm surface energy compatibility as a figure-of-merit for predicting the compositional dependence of the Voc in ternary blend solar cells and highlight the importance of polymer miscibility in organic alloy formation.

3.
J Phys Chem B ; 114(32): 10357-67, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20701370

RESUMEN

This work studies the phase separations between polymers and a small molecule in a common aqueous solution that do not have well-defined hydrophobic-hydrophilic separation. In addition to poly(acrylamide) (PAAm) and poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP) also promotes liquid crystal (LC) droplet formation by disodium cromoglycate (5'DSCG) solvated in water. In the presence of these polymers, the concentration of 5'DSCG needed for forming LC droplets is substantially lower than that needed for forming an LC phase by 5'DSCG alone. To define the concentration ranges that 5'DSCG molecules form liquid crystals (either as droplets or as an isotropic-LC mixture), we constructed ternary phase diagrams for 5'DSCG, water, and a polymer - PVA, PVP, or PAAm. We discovered that PAAm with high molecular weight promotes LC droplet formation by 5'DSCG more effectively than PAAm with low molecular weight. At the same weight percentage, long-chain PAAm can cause 5'DSCG to form LC droplets in water, whereas short-chain PAAm does not. Poly(vinyl pyrrolidone) (PVP), which has functional groups that are more dissimilar to 5'DSCG than PVA and PAAm, promotes LC droplet formation by 5'DSCG more effectively than either of the other two polymers. Additionally, small angle neutron scattering data revealed that the assembly structure of 5'DSCG promoted by the presence of PVA is similar to the thread structure formed by 5'DSCG alone. Together, these results reveal how noncovalent polymerization can be promoted by mixing thermodynamically incompatible molecules and elucidate the basic knowledge of nonamphiphilic colloidal science.


Asunto(s)
Polímeros/química , Agua/química , Cromolin Sódico/química , Cristalización , Interacciones Hidrofóbicas e Hidrofílicas , Cristales Líquidos/química , Estructura Molecular , Dispersión del Ángulo Pequeño , Soluciones , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...